SYMBIOSIS INTERNAITONAL (DEEMED UNIVERSITY) Ph D ENTRANCE TEST

The Syllabus of Mathematics Sub stream

1) Analysis:

Elementary set theory, finite, countable and uncountable sets, Real number system as a complete ordered field, Archimedean property, supremum, infimum. Sequences and series, convergence, limsup, liminf. Bolzano Weierstrass theorem, Continuity, uniform continuity, differentiability, mean value theorem. Sequences and series of functions, uniform convergence. Riemann sums and Riemann integral, Improper Integrals. Monotonic functions, types of discontinuity, functions of bounded variation, Functions of several variables, directional derivative, partial derivative, derivative as a linear transformation, inverse and implicit function theorems. Metric spaces, compactness, connectedness. Normed linear Spaces. Spaces of continuous functions as examples.

2) Linear Algebra:

Vector spaces, subspaces, linear dependence, basis, dimension, algebra of linear transformations. Algebra of matrices, rank and determinant of matrices, linear equations. Eigenvalues and eigenvectors, Cayley-Hamilton theorem. Matrix representation of linear transformations. Change of basis, canonical forms, diagonal forms, triangular forms, Jordan forms. Inner product spaces, orthonormal basis. Quadratic forms, reduction and classification of quadratic forms

3) Complex Analysis:

Algebra of complex numbers, the complex plane, polynomials, power series, transcendental functions such as exponential, trigonometric and hyperbolic functions. Analytic functions, Cauchy-Riemann equations. Contour integral, Cauchy's theorem, Cauchy's integral formula, Liouville's theorem, Taylor series, Laurent series, calculus of residues. Conformal mappings, Mobius transformations.

4) Algebra: Permutations, combinations, pigeon-hole principle, inclusion

-exclusion principle, derangements. Fundamental theorem of arithmetic, Groups, subgroups, normal subgroups, quotient groups, homomorphisms, cyclic groups, permutation groups, Cayley's theorem, class equations,. Rings, ideals, prime and maximal ideals, quotient rings, unique factorization domain, principal ideal domain, Euclidean domain. Fields, finite fields, field extensions, Topology: basis, dense sets, subspace and product topology, separation axioms, connectedness and compactness.

5) Ordinary Differential Equations (ODEs):

Existence and uniqueness of solutions of initial value problems for first order ordinary differential equations, singular solutions of first order ODEs, system of first order ODEs. General theory of

homogenous and non-homogeneous linear ODEs, variation of parameters, Sturm-Liouville boundary value problem, Green's function.

6) Partial Differential Equations (PDEs):

Lagrange and Charpit methods for solving first order PDEs, Cauchy problem for first order PDEs. Classification of second order PDEs, General solution of higher order PDEs with constant coefficients, Method of separation of variables for Laplace, Heat and Wave equations.

7) Numerical Analysis:

Numerical solutions of algebraic equations, Method of iteration and Newton-Raphson method, Rate of convergence, Solution of systems of linear algebraic equations using Gauss elimination and Gauss-Seidel methods, Finite differences, Lagrange, Hermite and spline interpolation, Numerical differentiation and integration, Numerical solutions of ODEs using Picard, Euler, modified Euler and Runge-Kutta methods.

8) Calculus of Variations:

Variation of a functional, Euler-Lagrange equation, Necessary and sufficient conditions for extrema. Variational methods for boundary value problems in ordinary and partial differential equations.

9) Classical Mechanics:

Generalized coordinates, Lagrange's equations, Hamilton's canonical equations, Hamilton's principle and principle of least action, Two-dimensional motion of rigid bodies, Euler's dynamical equations for the motion of a rigid body about an axis, theory of small oscillations.

10) Probability and Statistics

Probability space, conditional probability, Bayes theorem, independence, Random

variables, joint and conditional distributions, standard probability distributions and their properties (Discrete uniform, Binomial, Poisson, Geometric, Negative binomial, Normal, Exponential, Gamma, Continuous uniform, Bivariate normal, Multinomial), expectation, conditional expectation, moments; likelihood estimators; Interval estimation; measures of central tendencies, measures of dispersion, skewness, kurtosis, correlation, rank correlation, Simple linear regression.

11) Linear programming

Linear programming problem and its formulation, convex sets and their properties,

Graphical method, basic feasible solution, simplex method, big-M and two phase methods; infeasible and unbounded LPP's, alternate optima; Dual problem and duality theorems, dual simplex method